class: inverse, middle, title-slide, big-margin background-color: #000000 .pull-left-wide[ # Exploring dimensions of biodiversity in Japanese ferns <br> ## Joel H. Nitta<sup>1</sup>, Brent D. Misher<sup>2</sup>, Wataru Iwasaki<sup>1</sup>, Atsushi Ebihara<sup>3</sup> <sup>1</sup>University of Tokyo, Japan<br> <sup>2</sup>University of California, Berkeley, USA<br> <sup>3</sup>National Museum of Nature and Science, Japan <span style = 'font-size: 80%;'>https://joelnitta.com</span> ] .pull-right-narrow[ ![](images/title_cropped.png) ] --- class: big-margin ## Biodiversity: more than just counting species Species richness is only one dimension of biodiversity! We should also consider - Phylogenetic diversity - Functional diversity - How these are related to each other <img src="images/not_just_species.png" alt="drawing" width="800"/> --- class: big-margin ## Biodiversity: more than just counting species Species richness is only one dimension of biodiversity! We should also consider - Phylogenetic diversity - Functional diversity - How these are related to each other **This requires comprehensive sampling of taxa, DNA, and traits** --- class: big-margin ## Ferns of Japan: an ideal system for studying biodiversity .pull-left[ - Diverse flora - ca. 675 spp. - 98 genera - 34 families - One of the best-collected fern floras in the world - Data available for DNA, distribution, and traits ] .pull-right[ .center[ <img src="images/ja_example_ferns.png" alt="drawing" height="580"/> ] ] .footnote[.small[Photos: A. Ebihara]] --- class: big-margin ## Ferns of Japan: an ideal system for studying biodiversity .pull-left[ - Diverse flora - ca. 675 spp. - 98 genera - 34 families - One of the best-collected fern floras in the world - Data available for DNA, distribution, and traits ] .pull-right[ ![](index_files/figure-html/gbif-colls-per-country-1.svg)<!-- --> ] --- ## A (very brief) introduction to the biogeography of Japan .pull-left-narrow[ - Wide variation in climate from north (subarctic) to south (subtropical) - Wide variation in elevation - Tertiary relict flora (never glaciated) - Main islands continental, southern islands oceanic ] .pull-right-wide[ <img src="images/japan_intro.png" alt="drawing" height="580"/> ] --- class: big-margin ## Goals of this study Using the **ferns of Japan** as a study system, seek to understand: 1. How is biodiversity distributed? 2. How is biodiversity structured? 3. How well is biodiversity protected? --- class: big-margin ## Data sources **Occurrence data** - Specimens at herbaria in Japan - 300,169 specimens (674 taxa) - Convert to 0.2° (ca. 20 km x 20 km) presence-absence matrix --- class: big-margin ## Data sources **Phylogenetic tree** - *rbcL* sequences from Japanese specimens (Ebihara and Nitta, 2019) - Combine with broad sampling from GenBank - Infer phylogeny with IQ-TREE (Nguyen et al., 2015) - Date with 27 fossil calibration points (Testo and Sundue, 2016) using treePL (Smith and O'Meara, 2012) - Subset to only Japanese taxa --- class: big-margin ## Data sources **Traits** - 16 morphological traits mostly used for ID (Ebihara and Nitta, 2019) - 3 binary (e.g., false indusium) - 3 continuous (e.g., stipe length) - 10 qualitative (e.g., indusium shape, lamina texture) --- class: middle, inverse, big-margin # How is biodiversity distributed? --- ## Species richness is humped-shaped <img src="index_files/figure-html/richness-1.svg" width="120%" /> .footnote[Trendline: General additive model (GAM) with cubic splines] --- class: big-margin ## Measuring diversity with a tree .center[ <img src="images/pd.png" alt="drawing" height="250"/> ] <u>**P**</u>hylogenetic <u>**D**</u>iversity: Total unique branch length (Faith, 1992) <u>**F**</u>unctional <u>**D**</u>iversity: PD, but measured with a trait dendrogram (Petchey and Gaston, 2002) --- ## PD and FD are correlated with richness <img src="index_files/figure-html/raw-div-1-1.svg" width="120%" /> --- ## PD and FD are correlated with richness... as expected <img src="index_files/figure-html/raw-div-2-1.svg" width="120%" /> .footnote[Trendline: GAM with log-transform] --- class: big-margin ## Compare raw values to random expectation with<br> <u>**S**</u>tandard <u>**E**</u>ffect <u>**S**</u>ize .large[ .center[ `\(SES = \frac{obs - mean(null)}{sd(null)}\)` ] ] SES = 0: not different from random SES > 0: more diverse than expected SES < 0: less diverse than expected Null distribution: 999 communities randomized using "Independent Swap" (Gotelli, 2000) --- ## SES of PD is mostly clustered throughout <img src="index_files/figure-html/ses-pd-1.svg" width="120%" /> .footnote[Trendline: GAM with cubic splines] --- background-position: 40% 50% background-image: url(images/RPD.png) background-size: contain ## Compare branch lengths with <u>**R**</u>elative <u>**P**</u>hylogenetic <u>**D**</u>iversity .pull-right[ Long branches - Refugia - Occurrence of a few members of clades that mainly occur outside of the study region Short branches - Recent speciation .small[Mishler et al. (2014) ] ] --- ## RPD is high in the north and south <img src="index_files/figure-html/ses-rpd-1.svg" width="120%" /> .footnote[Trendline: GAM with cubic splines] --- ## Southern islands have high RFD (RFD = functional analog of RPD) <img src="index_files/figure-html/ses-rpd-rfd-1.svg" width="120%" /> .footnote[Trendline: GAM with cubic splines] --- ## Southern islands are hotspots of endemism Phylogenetic endemism = PD weighted by range size (Rosauer et al., 2009) <img src="index_files/figure-html/pe-1.svg" width="120%" /> .footnote[Trendline: GAM with cubic splines] --- class: middle, inverse, big-margin # How is biodiversity structured? --- ## Classify bioregions using clustering .center[ <img src="images/daru_2017.png" alt="drawing" height="400"/> ] (can also use taxonomic distances) .footnote[Daru, Elliott, Park, and Davies (2017); Daru, Farooq, Antonelli, and Faurby (2020)] --- ## Most sites fall into four bioregions <img src="index_files/figure-html/tax-bioregion-1.svg" width="120%" /> --- background-position: 50% 50% background-image: url(images/species-background-1.png) background-size: contain ## Most sites fall into four bioregions <img src="index_files/figure-html/plot-top-species-cluster-1-1.svg" width="120%" /> .footnote[] --- background-position: 50% 50% background-image: url(images/species-background-2.png) background-size: contain ## Most sites fall into four bioregions <img src="index_files/figure-html/plot-top-species-cluster-2-1.svg" width="120%" /> .footnote[] --- background-position: 50% 50% background-image: url(images/species-background-3.png) background-size: contain ## Most sites fall into four bioregions <img src="index_files/figure-html/plot-top-species-cluster-3-1.svg" width="120%" /> .footnote[] --- background-position: 50% 50% background-image: url(images/species-background-4.png) background-size: contain ## Most sites fall into four bioregions <img src="index_files/figure-html/plot-top-species-cluster-4-1.svg" width="120%" /> .footnote[] --- ## Taxonomic and phylogenetic bioregions are similar <img src="index_files/figure-html/compare-bioregion-1.svg" width="120%" /> --- ## Bioregions mostly match traditionally-defined forest types .pull-left[ Taxonomic bioregions ![](index_files/figure-html/tax-bioregion-forest-1.svg)<!-- --> ] .pull-right[ Forest types<br> .small[Shimizu (2014)<br><br>] <img src="images/forest_types_eng.png" alt="drawing" width="280"/> ] --- class: middle, inverse, big-margin # How well is biodiversity protected? --- ## Japan is well-protected overall (ca. 30% coverage) <img src="index_files/figure-html/protected-areas-1.png" width="120%" /> --- ## Hotspots of taxonomic richness are well-protected <img src="index_files/figure-html/protected-richness-1.svg" width="120%" /> --- ## Hotspots of phylogenetic endemism are also well-protected <img src="index_files/figure-html/protected-pe-1.svg" width="120%" /> --- class: big-margin ## A growing threat: herbivory by deer (*Cervus nippon*) .center[ <img src="images/deer_damage_1.png" alt="drawing" height="450"/> ] --- class: big-margin ## A growing threat: herbivory by deer (*Cervus nippon*) .center[ <img src="images/deer_damage_2.png" alt="drawing" height="500"/> ] --- class: big-margin # Conclusions - How is biodiversity distributed? - How is biodiversity structured? - How well is biodiversity protected? --- class: big-margin # Conclusions .pull-left[ How is biodiversity distributed? - Taxonomic diversity highest in Kyushu - Phylogenetic and functional diversity, phylogenetic endemism highest in southern islands ] .pull-right[ <img src="index_files/figure-html/conclusions-richness-1.svg" width="450px" /> ] --- class: big-margin # Conclusions .pull-left[ How is biodiversity structured? - Into four major clusters that track major forest types ] .pull-right[ ![](index_files/figure-html/conclusions-regions-1.svg)<!-- --> ] --- class: big-margin # Conclusions .pull-left[ How well is biodiversity protected? - Well-protected in terms of status - May be in danger due to herbivory by deer ] .pull-right[ ![](index_files/figure-html/conclusions-protection-1.svg)<!-- --> ] --- # Future directions .pull-left[ <br> - Understand the role that hybridization has on diversification <br> (ca. 300 described hybrids!) <br> <br><br> <br> - Clarify the role of fern gametophytes in community assembly at broad scales ] .pull-right[ <img src="images/vandenboschia.png" alt="drawing" width="280"/> <img src="images/IMGP5729.jpeg" alt="drawing" width="300"/><br>.tiny[Photo: Joel Nitta] ] --- class:: big-margin # Acknowledgements .center[ <img src="images/pags-logo.png" alt="drawing" width="600"/> <img src="images/shida-no-kai-logo.png" alt="drawing" height="120"/> Members of the Iwasaki Lab (The University of Tokyo) Eric Schuettpelz (Smithsonian Institution) Alexander White (Smithsonian Institution) ] --- ## References .small[ Daru, B. H, T. L. Elliott, D. S. Park, et al. (2017). "Understanding the processes underpinning patterns of phylogenetic regionalization". In: _Trends in Ecology and Evolution_ 32, pp. 845-860. DOI: 10.1016/j.tree.2017.08.013. Daru, B. H, H. Farooq, A. Antonelli, et al. (2020). "Endemism patterns are scale dependent". In: _Nature Communications_ 11, p. 2115. DOI: 10.1038/s41467-020-15921-6. Ebihara, A. (2016). _The Standard of Ferns and Lycophytes in Japan, Vol. 1_. Tokyo: Gakken Plus. Ebihara, A. (2017). _The Standard of Ferns and Lycophytes in Japan, Vol. 2_. Tokyo: Gakken Plus. Ebihara, A, S. Matsumoto, and M. Ito (2009). "Taxonomy of the reticulate Vandenboschia radicans complex (Hymenophyllaceae) in Japan". In: _Acta Phytotaxonomica et Geobotanica_ 60, pp. 26-40. DOI: 10.18942/apg.KJ00005576220. Ebihara, A. and J. H. Nitta (2019). "An update and reassessment of fern and lycophyte diversity data in the Japanese Archipelago". In: _Journal of Plant Research_ 132, pp. 723-738. DOI: 10.1007/s10265-019-01137-3. Faith, D. P. (1992). "Conservation evaluation and phylogenetic diversity". In: _Biological Conservation_ 61, pp. 1-10. DOI: doi.org/10.1016/0006-3207(92)91201-3. Gotelli, N. J. (2000). "Null model analysis of species co-occurrence patterns". In: _Ecology_ 81.9, pp. 2606-2621. DOI: 10.2307/177478. ] --- ## References .small[ Mishler, B. D, N. Knerr, C. E. González-Orozco, et al. (2014). "Phylogenetic measures of biodiversity and neo- and paleo-endemism in Australian Acacia". In: _Nature Communications_ 5, p. 4473. DOI: 10.1038/ncomms5473. Nguyen, L. T, H. A. Schmidt, A. Von Haeseler, et al. (2015). "IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies". In: _Molecular Biology and Evolution_ 32, pp. 268-274. DOI: 10.1093/molbev/msu300. Petchey, O. L. and K. J. Gaston (2002). "Functional diversity (FD), species richness and community composition". In: _Ecology Letters_ 5, pp. 402-411. DOI: 10.1046/j.1461-0248.2002.00339.x. Rosauer, D. F, S. W. Laffan, M. Crisp, et al. (2009). "Phylogenetic endemism: a new approach for identifying geographical concentrations of evolutionary history". In: _Molecular Ecology_ 18, pp. 4061-4072. DOI: 10.1111/j.1365-294X.2009.04311.x. Shimizu, Y. (2014). "Process of the formation of Japanese forest and typification of vegetation zone: From an East Asian viewpoint". In: _地域学研究_, pp. 19-75. Smith, S. A. and B. C. O'Meara (2012). "treePL: divergence time estimation using penalized likelihood for large phylogenies". In: _Bioinformatics_ 28, pp. 2689-2690. DOI: 10.1093/bioinformatics/bts492. Testo, W. L. and M. A. Sundue (2016). "A 4000-species dataset provides new insight into the evolution of ferns". In: _Molecular Phylogenetics and Evolution_ 105, pp. 200-211. DOI: 10.1016/j.ympev.2016.09.003. ]